KIT | KIT-Bibliothek | Impressum | Datenschutz

Explaining Convolutional Neural Networks by Tagging Filters

Nguyen, A. 1; Hagenmayer, D. 1; Weller, T.; Färber, M. ORCID iD icon 1
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)

Abstract:

Convolutional neural networks (CNNs) have achieved astonishing performance on various image classification tasks, but it is difficult for humans to understand how a classification comes about. Recent literature proposes methods to explain the classification process to humans. These focus mostly on visualizing feature maps and filter weights, which are not very intuitive for non-experts. In this paper, we propose FilTag, an approach to effectively explain CNNs even to non-experts. The idea is that if images of a class frequently activate a convolutional filter, that filter will be tagged with that class. Based on the tagging, individual image classifications can then be intuitively explained using the tags of the filters that the input image activates. Finally, we show that the tags are useful in analyzing classification errors caused by noisy input images and that the tags can be further processed by machines.


Verlagsausgabe §
DOI: 10.5445/IR/1000155239
Veröffentlicht am 27.01.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 1613-0073
KITopen-ID: 1000155239
Erschienen in Proceedings of the CIKM 2022 Workshops co-located with 31st ACM International Conference on Information and Knowledge Management (CIKM 2022), Ed.: G. Drakopoulos
Veranstaltung 31st ACM International Conference on Information and Knowledge Management (CIKM 2022), Atlanta, Georgia, USA, 17.10.2022 – 21.10.2022
Verlag CEUR-WS.org
Serie CEUR workshop proceedings ; 3318
Vorab online veröffentlicht am 08.01.2023
Externe Relationen Abstract/Volltext
Schlagwörter CNN, images, explainable AI, semantic interpretability
Nachgewiesen in Scopus
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page