KIT | KIT-Bibliothek | Impressum | Datenschutz

Space-time error estimates for deep neural network approximations for differential equations

Grohs, Philipp; Hornung, Fabian 1; Jentzen, Arnulf; Zimmermann, Philipp
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract:

Over the last few years deep artificial neural networks (ANNs) have very successfully been used in numerical simulations for a wide variety of computational problems including computer vision, image classification, speech recognition, natural language processing, as well as computational advertisement. In addition, it has recently been proposed to approximate solutions of high-dimensional partial differential equations (PDEs) by means of stochastic learning problems involving deep ANNs. There are now also a few rigorous mathematical results in the scientific literature which provide error estimates for such deep learning based approximation methods for PDEs. All of these articles provide spatial error estimates for ANN approximations for PDEs but do not provide error estimates for the entire space-time error for the considered ANN approximations. It is the subject of the main result of this article to provide space-time error estimates for deep ANN approximations of Euler approximations of certain perturbed differential equations. Our proof of this result is based (i) on a certain ANN calculus and (ii) on ANN approximation results for products of the form $[0,T]×R^d∋(t,x)↦tx∈R^d where T∈(0,∞), d∈N$, which we both develop within this article.


Verlagsausgabe §
DOI: 10.5445/IR/1000155432
Veröffentlicht am 30.01.2023
Originalveröffentlichung
DOI: 10.1007/s10444-022-09970-2
Scopus
Zitationen: 8
Web of Science
Zitationen: 6
Dimensions
Zitationen: 20
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 02.2023
Sprache Englisch
Identifikator ISSN: 1019-7168, 1572-9044
KITopen-ID: 1000155432
Erschienen in Advances in Computational Mathematics
Verlag Springer
Band 49
Heft 1
Seiten Art.-Nr.: 4
Vorab online veröffentlicht am 11.01.2023
Schlagwörter ANNs, PDEs, Space-time error
Nachgewiesen in Dimensions
Web of Science
Scopus
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page