KIT | KIT-Bibliothek | Impressum | Datenschutz

Oxide ceramic electrolytes for all-solid-state lithium batteries – cost-cutting cell design and environmental impact

Schreiber, Andrea; Rosen, Melanie; Waetzig, Katja; Nikolowski, Kristian; Schiffmann, Nikolas 1; Wiggers, Hartmut; Küpers, Michael; Fattakhova-Rohlfing, Dina; Kuckshinrichs, Wilhelm; Guillon, Olivier; Finsterbusch, Martin
1 Institut für Angewandte Materialien – Keramische Werkstoffe und Technologien (IAM-KWT1), Karlsruher Institut für Technologie (KIT)

Abstract:

All-solid-state batteries are a hot research topic due to the prospect of high energy density and higher intrinsic safety, compared to conventional lithium-ion batteries. Of the wide variety of solid-state electrolytes currently researched, oxide ceramic lithium-ion conductors are considered the most difficult to implement in industrial cells. Although their high lithium-ion conductivity combined with a high chemical and thermal stability make them a very attractive class of materials, cost-cutting synthesis and scalable processing into full batteries remain to be demonstrated. Additionally, they are Fluorine-free and can be processed in air but require one or more high temperature treatment steps during processing counteracting their ecological benefits. Thus, a viable cell design and corresponding assessment of its ecological impact is still missing. To close this gap, we define a target cell combining the advantages of the two most promising oxidic electrolytes, lithium lanthanum zirconium oxide (LLZO) and lithium aluminium titanium phosphate (LATP). Even though it has not been demonstrated so far, the individual components are feasible to produce with state-of-the-art industrial manufacturing processes. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000155532
Veröffentlicht am 01.02.2023
Originalveröffentlichung
DOI: 10.1039/d2gc03368b
Scopus
Zitationen: 5
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Keramische Werkstoffe und Technologien (IAM-KWT1)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 03.01.2023
Sprache Englisch
Identifikator ISSN: 1463-9262, 1463-9270
KITopen-ID: 1000155532
Erschienen in Green Chemistry
Verlag Royal Society of Chemistry (RSC)
Band 25
Heft 1
Seiten 399–414
Vorab online veröffentlicht am 08.12.2022
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page