KIT | KIT-Bibliothek | Impressum | Datenschutz

Simulation of the Deformation for Cycling Chemo-Mechanically Coupled Battery Active Particles with Mechanical Constraints

Schoof, Raphael ORCID iD icon 1; Castelli, Giuseppe Fabian ORCID iD icon 2; Dörfler, Willy ORCID iD icon 1
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)
2 Institut für Thermische Verfahrenstechnik (TVT), Karlsruher Institut für Technologie (KIT)

Abstract:

Next-generation lithium-ion batteries with silicon anodes have positive characteristics due to higher energy densities compared to state-of-the-art graphite anodes. However, the large volume expansion of silicon anodes can cause high mechanical stresses, especially if the battery active particle cannot expand freely. In this article, a thermodynamically consistent continuum model for coupling chemical and mechanical effects of electrode particles is extended by a change in the boundary condition for the displacement via a variational inequality. This switch represents a limited enlargement of the particle swelling or shrinking due to lithium intercalation or deintercalation in the host material, respectively. For inequality constraints as boundary condition a smaller time step size is need as well as a locally finer mesh. The combination of a primal-dual active set algorithm, interpreted as semismooth Newton method, and a spatial and temporal adaptive algorithm allows the efficient numerical investigation based on a finite element method. Using the example of silicon, the chemical and mechanical behavior of one- and two-dimensional representative geometries for a charge-discharge cycle is investigated. ... mehr


Volltext §
DOI: 10.5445/IR/1000156042
Veröffentlicht am 16.02.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Institut für Thermische Verfahrenstechnik (TVT)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2023
Sprache Englisch
Identifikator KITopen-ID: 1000156042
Bemerkung zur Veröffentlichung Submitted
Vorab online veröffentlicht am 16.02.2023
Externe Relationen Siehe auch
Schlagwörter lithium-ion battery, finite deformation, obstacle problem, semismooth Newton method, finite elements, numerical simulation
Nachgewiesen in arXiv
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page