KIT | KIT-Bibliothek | Impressum | Datenschutz

O ( α$^s_2$ ) polarized heavy flavor corrections to deep-inelastic scattering at Q$^2$ ≫ m$^2$

Bierenbaum, I.; Blümlein, J. ; De Freitas, A.; Goedicke, A.; Klein, S.; Schönwald, K. 1
1 Institut für Theoretische Teilchenphysik (TTP), Karlsruher Institut für Technologie (KIT)

Abstract:

We calculate the quarkonic O(α$^2_s$) massive operator matrix elements $\Delta$A$_{Qg}$ (N),$\Delta$A$^{PS}_{Qq}$(N) and $\Delta$A$^{NS}_{qq}$,$_Q$(N) for the twist–2 operators and the associated heavy flavor Wilson coefficients in polarized deeply inelastic scattering in the region Q$^2$ ≫ m$^2$ to O(ε) in the case of the inclusive heavy flavor contributions. The evaluation is performed in Mellin space, without applying the integration-by-parts method. The result is given in terms of harmonic sums. This leads to a significant compactification of the operator matrix elements and massive Wilson coefficients in the region Q$^2$ ≫ m$^2$ derived previously in [1], which we partly confirm, and also partly correct. The results allow to determine the heavy flavor Wilson coefficients for g$_1$(x, Q$^2$) to O(α$^2_s$ ) for all but the power suppressed terms ∝ (m$^2$/Q$^2$)$^k$ , k ≥ 1. The results in momentum fraction z-space are also presented. We also discuss the small x effects in the polarized case. Numerical results are presented. We also compute the gluonic matching coefficients in the two–mass variable flavor number scheme to O(ε).


Verlagsausgabe §
DOI: 10.5445/IR/1000156332
Veröffentlicht am 02.03.2023
Originalveröffentlichung
DOI: 10.1016/j.nuclphysb.2023.116114
Scopus
Zitationen: 10
Web of Science
Zitationen: 4
Dimensions
Zitationen: 8
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Teilchenphysik (TTP)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 03.2023
Sprache Englisch
Identifikator ISSN: 0550-3213
KITopen-ID: 1000156332
Erschienen in Nuclear Physics B
Verlag North-Holland Publishing
Band 988
Seiten Art.-Nr.: 116114
Vorab online veröffentlicht am 10.02.2023
Nachgewiesen in Web of Science
Dimensions
Scopus
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page