KIT | KIT-Bibliothek | Impressum | Datenschutz

Optimization under uncertainty and risk: Quadratic and copositive approaches

Bomze, Immanuel M. ; Gabl, Markus 1
1 Institut für Operations Research (IOR), Karlsruher Institut für Technologie (KIT)

Abstract:

Robust optimization and stochastic optimization are the two main paradigms for dealing with the uncertainty inherent in almost all real-world optimization problems. The core principle of robust optimization is the introduction of parameterized families of constraints. Sometimes, these complicated semi-infinite constraints can be reduced to finitely many convex constraints, so that the resulting optimization problem can be solved using standard procedures. Hence flexibility of robust optimization is limited by certain convexity requirements on various objects. However, a recent strain of literature has sought to expand applicability of robust optimization by lifting variables to a properly chosen matrix space. Doing so allows to handle situations where convexity requirements are not met immediately, but rather intermediately.

In the domain of (possibly nonconvex) quadratic optimization, the principles of copositive optimization act as a bridge leading to recovery of the desired convex structures. Copositive optimization has established itself as a powerful paradigm for tackling a wide range of quadratically constrained quadratic optimization problems, reformulating them into linear convex-conic optimization problems involving only linear constraints and objective, plus constraints forcing membership to some matrix cones, which can be thought of as generalizations of the positive-semidefinite matrix cone. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000156419
Veröffentlicht am 21.03.2023
Originalveröffentlichung
DOI: 10.1016/j.ejor.2022.11.020
Scopus
Zitationen: 3
Web of Science
Zitationen: 2
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Operations Research (IOR)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 11.2022
Sprache Englisch
Identifikator ISSN: 0377-2217, 1872-6860
KITopen-ID: 1000156419
Erschienen in European Journal of Operational Research
Verlag Elsevier
Band 310
Heft 2
Seiten 449-476
Bemerkung zur Veröffentlichung cited By 0
Vorab online veröffentlicht am 11.11.2022
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page