KIT | KIT-Bibliothek | Impressum | Datenschutz

Self-Supervised Learning for Annotation Efficient Biomedical Image Segmentation

Rettenberger, Luca ORCID iD icon 1; Schilling, Marcel ORCID iD icon 1; Elser, Stefan; Boehland, Moritz 1; Reischl, Markus ORCID iD icon 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract:

Objective: The scarcity of high-quality annotated data is omnipresent in machine learning. Especially in biomedical segmentation applications, experts need to spend a lot of their time into annotating due to the complexity. Hence, methods to reduce such efforts are desired. Methods: Self-Supervised Learning (SSL) is an emerging field that increases performance when unannotated data is present. However, profound studies regarding segmentation tasks and small datasets are still absent. A comprehensive qualitative and quantitative evaluation is conducted, examining SSL's applicability with a focus on biomedical imaging. We consider various metrics and introduce multiple novel application-specific measures. All metrics and state-of-the-art methods are provided in a directly applicable software package ( https://osf.io/gu2t8/ ). Results: We show that SSL can lead to performance improvements of up to 10%, which is especially notable for methods designed for segmentation tasks. Conclusion: SSL is a sensible approach to data-efficient learning, especially for biomedical applications, where generating annotations requires much effort. Additionally, our extensive evaluation pipeline is vital since there are significant differences between the various approaches. ... mehr


Postprint §
DOI: 10.5445/IR/1000156520
Veröffentlicht am 07.03.2023
Originalveröffentlichung
DOI: 10.1109/TBME.2023.3252889
Scopus
Zitationen: 7
Web of Science
Zitationen: 4
Dimensions
Zitationen: 11
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 09.2023
Sprache Englisch
Identifikator ISSN: 0018-9294, 1558-2531
KITopen-ID: 1000156520
HGF-Programm 43.31.02 (POF IV, LK 01) Devices and Applications
Weitere HGF-Programme 47.14.02 (POF IV, LK 01) Information Storage and Processing in the Cell Nucleus
Erschienen in IEEE Transactions on Biomedical Engineering
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Band 70
Heft 9
Seiten 2519-2528
Vorab online veröffentlicht am 06.03.2023
Schlagwörter Biomedicine, contrastive learning, deep learning, segmentation, self-supervised learning
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page