KIT | KIT-Bibliothek | Impressum | Datenschutz

Dynamics of forced escape from asymmetric truncated parabolic well

Genda, Attila ORCID iD icon 1; Fidlin, Alexander 1; Gendelman, Oleg
1 Institut für Technische Mechanik (ITM), Karlsruher Institut für Technologie (KIT)

Abstract:

This study presents an analytic method for the estimation of safe basins in the plane of the initial conditions of the escape of a classical particle from an asymmetrically truncated quadratic potential well. For this purpose, an analytic method to estimate the global optimum of the sum of two harmonic functions is proposed. This approach is based on the mapping of the arguments of the two harmonic terms to the surface of the unit torus, where a surrogate optimization problem obtained by the Taylor expansion of the original objective function is solved. Applying the proposed method to the aforementioned escape problem helps predict safe basins for any value of the excitation frequency provided that the exciting force is not too strong, generating essentially non-linear effects on potential boundaries. Specifically, interesting effects with regard to the shape of safe basins occur when the natural frequency of the potential well and frequency of excitation represent the ratio of two small integers.


Verlagsausgabe §
DOI: 10.5445/IR/1000156906
Veröffentlicht am 16.03.2023
Originalveröffentlichung
DOI: 10.1002/zamm.202200567
Scopus
Zitationen: 2
Web of Science
Zitationen: 2
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Mechanik (ITM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 09.2023
Sprache Englisch
Identifikator ISSN: 0044-2267, 1521-4001
KITopen-ID: 1000156906
Erschienen in ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik
Verlag John Wiley and Sons
Band 103
Heft 9
Vorab online veröffentlicht am 26.02.2023
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page