KIT | KIT-Bibliothek | Impressum | Datenschutz

On the scattering of a plane wave by a perturbed open periodic waveguide

Kirsch, Andreas 1,2
1 Fakultät für Mathematik (MATH), Karlsruher Institut für Technologie (KIT)
2 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

We consider the scattering of a plane wave by a locally perturbed periodic (with respect to $x_1$ ) medium. If there is no perturbation, it is usually assumed that the scattered wave is quasi-periodic with the same parameter as the incident plane wave. As it is well known, one can show existence under this condition but not necessarily uniqueness. Uniqueness fails for certain incident directions (if the wavenumber is kept fixed), and it is not clear which additional condition has to be assumed in this case. In this paper, we will analyze three concepts. For the limiting absorption principle (LAP), we replace the refractive index $n = n(x)$ by $n(x) + i𝜀$ in a layer of finite width and consider the limiting case $𝜀 → 0$. This will give an unsatisfactory condition. In a second approach, we require continuity of the field with respect to the incident direction. This will give the same satisfactory condition as the third approach where we approxi- mate the incident plane wave by an incident point source and let the location of the source tend to infinity.


Verlagsausgabe §
DOI: 10.5445/IR/1000156971
Veröffentlicht am 16.03.2023
Originalveröffentlichung
DOI: 10.1002/mma.9147
Scopus
Zitationen: 2
Web of Science
Zitationen: 2
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 0170-4214, 1099-1476
KITopen-ID: 1000156971
Erschienen in Mathematical Methods in the Applied Sciences
Verlag John Wiley and Sons
Band 46
Heft 9
Seiten 10698-10718
Vorab online veröffentlicht am 02.03.2023
Schlagwörter periodic structure, radiation condition, scattering problem
Nachgewiesen in Web of Science
Scopus
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page