KIT | KIT-Bibliothek | Impressum | Datenschutz

Material‐informed training of viscoelastic deep material networks

Gajek, Sebastian; Schneider, Matti; Böhlke, Thomas ORCID iD icon

Abstract:

Deep material networks (DMN) are a data-driven homogenization approach that show great promise for accelerating concurrent two-scale simulations. As a salient feature, DMNs are solely identified by linear elastic precomputations on representative volume elements. After parameter identification, DMNs act as surrogates for full-field simulations of such volume elements with inelastic constituents.

In this work, we investigate how the training on linear elastic data, i.e., how the choice of the loss function and the sampling of the training data, affects the accuracy of DMNs for inelastic constituents. We investigate linear viscoelasticity and derive a material-informed sampling procedure for generating the training data and a loss function tailored to the problem at hand. These ideas improve the accuracy of an identified DMN and allow for significantly reducing the number of samples to be generated and labeled.


Verlagsausgabe §
DOI: 10.5445/IR/1000157291
Veröffentlicht am 27.03.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Mechanik (ITM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 03.2023
Sprache Englisch
Identifikator ISSN: 1617-7061
KITopen-ID: 1000157291
Erschienen in PAMM
Verlag Wiley-VCH Verlag
Band 22
Heft 1
Seiten Art.-Nr.: e202200143
Bemerkung zur Veröffentlichung Special Issue: 92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM)
Vorab online veröffentlicht am 24.03.2023
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page