KIT | KIT-Bibliothek | Impressum | Datenschutz

Physics-regularized neural network of the ideal-MHD solution operator in Wendelstein 7-X configurations

Merlo, Andrea; Böckenhoff, Daniel; Schilling, Jonathan; Lazerson, Samuel Aaron; Pedersen, Thomas Sunn; W7-X Team 1
1 Institut für Hochleistungsimpuls- und Mikrowellentechnik (IHM), Karlsruher Institut für Technologie (KIT)

Abstract:

The computational cost of constructing 3D magnetohydrodynamic (MHD) equilibria is one of
the limiting factors in stellarator research and design. Although data-driven approaches have
been proposed to provide fast 3D MHD equilibria, the accuracy with which equilibrium
properties are reconstructed is unknown. In this work, we describe an artificial neural network
(NN) that quickly approximates the ideal-MHD solution operator in Wendelstein 7-X (W7-X)
configurations. This model fulfils equilibrium symmetries by construction. The MHD force
residual regularizes the solution of the NN to satisfy the ideal-MHD equations. The model
predicts the equilibrium solution with high accuracy, and it faithfully reconstructs global
equilibrium quantities and proxy functions used in stellarator optimization. We also optimize
W7-X magnetic configurations, where desirable configurations can be found in terms of fast
particle confinement. This work demonstrates with which accuracy NN models can approximate
the 3D ideal-MHD solution operator and reconstruct equilibrium properties of interest, and it
suggests how they might be used to optimize stellarator magnetic configurations.


Verlagsausgabe §
DOI: 10.5445/IR/1000158123
Veröffentlicht am 24.04.2023
Originalveröffentlichung
DOI: 10.1088/1741-4326/acc852
Scopus
Zitationen: 2
Web of Science
Zitationen: 2
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Hochleistungsimpuls- und Mikrowellentechnik (IHM)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 01.06.2023
Sprache Englisch
Identifikator ISSN: 0029-5515, 1741-4326
KITopen-ID: 1000158123
HGF-Programm 31.13.02 (POF IV, LK 01) Plasma Heating & Current Drive Systems
Erschienen in Nuclear Fusion
Verlag International Atomic Energy Agency (IAEA)
Band 63
Heft 6
Seiten Arkl.Nr.: 066020
Projektinformation EUROfusion (EU, EU 9. RP, 101052200)
Vorab online veröffentlicht am 20.04.2023
Schlagwörter neural networks, surrogate models, ideal-MHD, Wendelstein 7-X
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page