KIT | KIT-Bibliothek | Impressum | Datenschutz

Comparison of different approaches to multistage lot sizing with uncertain demand

Bindewald, Viktor 1; Dunke, Fabian 1; Nickel, Stefan 1
1 Institut für Operations Research (IOR), Karlsruher Institut für Technologie (KIT)

Abstract:

We study a new variant of the classical lot sizing problem with uncertain demand where neither the planning horizon nor demands are known exactly. This situation arises in practice when customer demands arriving over time are confirmed rather lately during the transportation process. In terms of planning, this setting necessitates a rolling horizon procedure where the overall multistage problem is dissolved into a series of coupled snapshot problems under uncertainty. Depending on the available data and risk disposition, different approaches from online optimization, stochastic programming, and robust optimization are viable to model and solve the snapshot problems. We evaluate the impact of the selected methodology on the overall solution quality using a methodology-agnostic framework for multistage decision-making under uncertainty. We provide computational results on lot sizing within a rolling horizon regarding different types of uncertainty, solution approaches, and the value of available information about upcoming demands.


Verlagsausgabe §
DOI: 10.5445/IR/1000158498
Veröffentlicht am 10.05.2023
Originalveröffentlichung
DOI: 10.1111/itor.13305
Scopus
Zitationen: 4
Web of Science
Zitationen: 3
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Operations Research (IOR)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 0969-6016, 1475-3995
KITopen-ID: 1000158498
Erschienen in International Transactions in Operational Research
Verlag John Wiley and Sons
Band 30
Heft 6
Seiten 3771-3800
Vorab online veröffentlicht am 19.04.2023
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page