KIT | KIT-Bibliothek | Impressum | Datenschutz

An improved grand-potential phase-field model of solid-state sintering for many particles

Seiz, Marco ORCID iD icon 1; Hierl, Henrik 1; Nestler, Britta 2
1 Institut für Angewandte Materialien – Computational Materials Science (IAM-CMS), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract:

Understanding the microstuctural evolution during the sintering process is of high relevance as it is a key part in many industrial manufacturing processes. Simulations are one avenue to achieve this understanding, especially field-resolved methods such as the phase-field (PF) method. Recent papers have shown several weaknesses in the most common PF model of sintering, which the present paper aims to ameliorate. The observed weaknesses are shortly recounted, followed by presenting model variations aiming to remove these deficiencies. The models are tested in the classical two-particle geometry, with the most promising model being run on large-scale three-dimensional packings to determine representative volume elements. A densification that is strongly dependent on the packing size is observed, which suggests that the model requires further improvement.


Postprint §
DOI: 10.5445/IR/1000158794/post
Veröffentlicht am 16.05.2024
Preprint §
DOI: 10.5445/IR/1000158794
Veröffentlicht am 16.05.2023
Originalveröffentlichung
DOI: 10.1088/1361-651X/acd56d
Scopus
Zitationen: 5
Web of Science
Zitationen: 5
Dimensions
Zitationen: 6
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Computational Materials Science (IAM-CMS)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 26.05.2023
Sprache Englisch
Identifikator ISSN: 0965-0393, 1361-651X
KITopen-ID: 1000158794
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Modelling and Simulation in Materials Science and Engineering
Verlag Institute of Physics Publishing Ltd (IOP Publishing Ltd)
Band 31
Heft 5
Seiten Art.-Nr.: 055006
Vorab online veröffentlicht am 15.05.2023
Nachgewiesen in Web of Science
Dimensions
Scopus
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page