KIT | KIT-Bibliothek | Impressum | Datenschutz

Synergies between Numerical Methods for Kinetic Equations and Neural Networks

Schotthöfer, Steffen ORCID iD icon 1
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The overarching theme of this work is the efficient computation of large-scale systems. Here we deal with two types of mathematical challenges, which are quite different at first glance but offer similar opportunities and challenges upon closer examination.

Physical descriptions of phenomena and their mathematical modeling are performed on diverse scales, ranging from nano-scale interactions of single atoms to the macroscopic dynamics of the earth's atmosphere. We consider such systems of interacting particles and explore methods to simulate them efficiently and accurately, with a focus on the kinetic and macroscopic description of interacting particle systems.
Macroscopic governing equations describe the time evolution of a system in time and space, whereas the more fine-grained kinetic description additionally takes the particle velocity into account.
The study of discretizing kinetic equations that depend on space, time, and velocity variables is a challenge due to the need to preserve physical solution bounds, e.g. positivity, avoiding spurious artifacts and computational efficiency.
In the pursuit of overcoming the challenge of computability in both kinetic and multi-scale modeling, a wide variety of approximative methods have been established in the realm of reduced order and surrogate modeling, and model compression. ... mehr


Volltext §
DOI: 10.5445/IR/1000158838
Veröffentlicht am 05.06.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Institut für Informationssicherheit und Verlässlichkeit (KASTEL)
Scientific Computing Center (SCC)
Publikationstyp Hochschulschrift
Publikationsdatum 05.06.2023
Sprache Englisch
Identifikator KITopen-ID: 1000158838
HGF-Programm 46.21.02 (POF IV, LK 01) Cross-Domain ATMLs and Research Groups
Verlag Karlsruher Institut für Technologie (KIT)
Umfang xvii, 198 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Mathematik (MATH)
Institut Institut für Angewandte und Numerische Mathematik (IANM)
Prüfungsdatum 03.05.2023
Projektinformation SPP 2298 (DFG, DFG KOORD, FR 2841/9-1)
Schlagwörter Kinetic Models, Numerical Methods, Machine Learning, Neural Networks, Optimization, Low-Rank Compression
Referent/Betreuer Frank, Martin
Platzer, André
Hauck, Cory D.
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page