KIT | KIT-Bibliothek | Impressum | Datenschutz

Dimension Estimates for Parabolic Equations and Harmonic Maps of low Index

Kaltefleiter, Sophia 1
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

In the first part of this thesis we establish dimension bounds for spaces of polynomial growth solutions to divergence form parabolic partial differential equations with time-dependent coefficients as well as sharp bounds in the case of time-independent coefficients.
The second, main part of this thesis is devoted to smooth, harmonic maps of low index, in particular to the classification of such maps into round spheres.
Towards this we first study the change of the index of smooth, harmonic submersions into round spheres upon consideration as maps into higher-dimensional round spheres, that is after composition with the totally geodesic inclusion map into a higher-dimensional sphere. This is illustrated by the examples of the Hopf maps $S^3\rightarrow\,S^2$ and $S^1\rightarrow\,S^1$.
As an application we can describe for $n\geq3$ a class of harmonic morphisms of low index from the round $n$-sphere into submanifolds of the round $n$-sphere arising from smooth maps of constant rank.
Finally we prove an El Soufi-type index bound for smooth, harmonic maps from simply connected Riemannian manifolds satisfying the Killing property into round spheres. ... mehr


Volltext §
DOI: 10.5445/IR/1000158988
Veröffentlicht am 01.06.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Publikationstyp Hochschulschrift
Publikationsdatum 01.06.2023
Sprache Englisch
Identifikator KITopen-ID: 1000158988
Verlag Karlsruher Institut für Technologie (KIT)
Umfang v, 94 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Mathematik (MATH)
Institut Institut für Analysis (IANA)
Prüfungsdatum 10.05.2023
Schlagwörter polynomial growth solutions, harmonic maps, Morse index, harmonic morphisms, geometric analysis, partial differential equations, differential geometry
Referent/Betreuer Lamm, Tobias
Loubeau, Eric
Kunstmann, Peer
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page