KIT | KIT-Bibliothek | Impressum | Datenschutz

Structural Properties of Gibbsian Point Processes in Abstract Spaces

Betsch, Steffen 1
1 Institut für Stochastik (STOCH), Karlsruher Institut für Technologie (KIT)

Abstract:

In the language of random counting measures, many structural properties of the Poisson process can be studied in arbitrary measurable spaces. We provide a similarly general treatise of Gibbs processes. With the GNZ equations as a definition of these objects, Gibbs processes can be introduced in abstract spaces without any topological structure. In this general setting, partition functions, Janossy densities, and correlation functions are studied. While the definition covers finite and infinite Gibbs processes alike, the finite case allows, even in abstract spaces, for an equivalent and more explicit characterization via a familiar series expansion. Recent generalizations of factorial measures to arbitrary measurable spaces, where counting measures cannot be written as sums of Dirac measures, likewise allow to generalize the concept of Hamiltonians. The DLR equations, which completely characterize a Gibbs process, as well as basic results for the local convergence topology, are also formulated in full generality. We prove a new theorem on the extraction of locally convergent subsequences from a sequence of point processes and use this statement to provide existence results for Gibbs processes in general spaces with potentially infinite range of interaction. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000159115
Veröffentlicht am 27.06.2023
Originalveröffentlichung
DOI: 10.1007/s10959-023-01262-9
Scopus
Zitationen: 1
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Stochastik (STOCH)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 0894-9840, 1572-9230
KITopen-ID: 1000159115
Erschienen in Journal of Theoretical Probability
Verlag Springer
Band 36
Seiten 2501–2563
Vorab online veröffentlicht am 16.05.2023
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page