KIT | KIT-Bibliothek | Impressum | Datenschutz

3D-2D Distance Maps Conversion Enhances Classification of Craniosynostosis

Schaufelberger, Matthias 1; Kaiser, Christian 1; Kühle, Reinald; Wachter, Andreas ORCID iD icon 1; Weichel, Frederic; Hagen, Niclas; Hagen, N.; Ringwald, F.; Ringwald, Friedemann; Eisenmann, Urs; Hoffmann, Jörgen; Engel, Michael; Freudlsperger, Christian; Nahm, Werner 1
1 Institut für Biomedizinische Technik (IBT), Karlsruher Institut für Technologie (KIT)

Abstract:

Objective: Diagnosis of craniosynostosis using photogrammetric 3D surface scans is a promising radiation-free alternative to traditional computed tomography. We propose a 3D surface scan to 2D distance map conversion enabling the usage of the first convolutional neural networks (CNNs)-based classification of craniosynostosis. Benefits of using 2D images include preserving patient anonymity, enabling data augmentation during training, and a strong under-sampling of the 3D surface with good classification performance. Methods: The proposed distance maps sample 2D images from 3D surface scans using a coordinate transformation, ray casting, and distance extraction. We introduce a CNNbased classification pipeline and compare our classifier to alternative approaches on a dataset of 496 patients. We investigate into low-resolution sampling, data augmentation, and attribution mapping. Results: Resnet18 outperformed alternative classifiers on our dataset with an F1-score of 0.964 and an accuracy of 98.4 %. Data augmentation on 2D distance maps increased performance for all classifiers. Under-sampling allowed 256-fold computation reduction during ray casting while retaining an F1-score of 0.92. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000159420
Veröffentlicht am 16.06.2023
Originalveröffentlichung
DOI: 10.1109/TBME.2023.3278030
Scopus
Zitationen: 4
Web of Science
Zitationen: 2
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Biomedizinische Technik (IBT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 0018-9294, 1558-2531
KITopen-ID: 1000159420
Erschienen in IEEE Transactions on Biomedical Engineering
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Band 70
Heft 11
Seiten 3156 - 3165
Vorab online veröffentlicht am 19.05.2023
Schlagwörter Craniosynostosis, photogrammetric surface scans, classification, CNN, convolutional neural network, 2D conversion, distance map, data augmentation, resolution
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page