KIT | KIT-Bibliothek | Impressum | Datenschutz

A multi-task learning-based optimization approach for finding diverse sets of microstructures with desired properties

Iraki, Tarek; Morand, Lukas; Dornheim, Johannes ORCID iD icon 1; Link, Norbert; Helm, Dirk
1 Institut für Angewandte Materialien – Zuverlässigkeit und Mikrostruktur (IAM-ZM), Karlsruher Institut für Technologie (KIT)

Abstract:

Optimization along the chain processing-structure-properties-performance is one of the core objectives in data-driven materials science. In this sense, processes are supposed to manufacture workpieces with targeted material microstructures. These microstructures are defined by the material properties of interest and identifying them is a question of materials design. In the present paper, we addresse this issue and introduce a generic multi-task learning-based optimization approach. The approach enables the identification of sets of highly diverse microstructures for given desired properties and corresponding tolerances. Basically, the approach consists of an optimization algorithm that interacts with a machine learning model that combines multi-task learning with siamese neural networks. The resulting model (1) relates microstructures and properties, (2) estimates the likelihood of a microstructure of being producible, and (3) performs a distance preserving microstructure feature extraction in order to generate a lower dimensional latent feature space to enable efficient optimization. The proposed approach is applied on a crystallographic texture optimization problem for rolled steel sheets given desired properties.


Verlagsausgabe §
DOI: 10.5445/IR/1000159422
Veröffentlicht am 16.06.2023
Originalveröffentlichung
DOI: 10.1007/s10845-023-02139-8
Scopus
Zitationen: 3
Web of Science
Zitationen: 4
Dimensions
Zitationen: 7
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Zuverlässigkeit und Mikrostruktur (IAM-ZM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 04.2024
Sprache Englisch
Identifikator ISSN: 0956-5515, 1572-8145
KITopen-ID: 1000159422
Erschienen in Journal of Intelligent Manufacturing
Verlag Springer
Band 35
Heft 4
Seiten 1887–1903
Vorab online veröffentlicht am 26.05.2023
Schlagwörter Crystal plasticity, Distance preserving feature extraction, Machine learning, Materials design, Multi-task learning, Multidimensional scaling, Siamese neural networks, Texture optimization
Nachgewiesen in Scopus
Web of Science
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page