KIT | KIT-Bibliothek | Impressum | Datenschutz

A multi-task learning-based optimization approach for finding diverse sets of material microstructures with desired properties and its application to texture optimization

Iraki, Tarek; Morand, Lukas; Dornheim, Johannes ORCID iD icon 1; Link, Norbert; Helm, Dirk
1 Institut für Angewandte Materialien – Zuverlässigkeit und Mikrostruktur (IAM-ZM), Karlsruher Institut für Technologie (KIT)

Abstract:

The optimization along the chain processing-structure-properties-performance is one of the core objectives in data-driven materials science. In this sense, processes are supposed to manufacture workpieces with targeted material microstructures. These microstructures are defined by the material properties of interest and identifying them is a question of materials design. In the present paper, we addresse this issue and introduce a generic multi-task learning-based optimization approach. The approach enables the identification of sets of highly diverse microstructures for given desired properties and corresponding tolerances. Basically, the approach consists of an optimization algorithm that interacts with a machine learning model that combines multi-task learning with siamese neural networks. The resulting model (1) relates microstructures and properties, (2) estimates the likelihood of a microstructure of being producible, and (3) performs a distance preserving microstructure feature extraction in order to generate a lower dimensional latent feature space to enable efficient optimization. The proposed approach is applied on a crystallographic texture optimization problem for rolled steel sheets given desired properties.


Volltext §
DOI: 10.5445/IR/1000159515
Veröffentlicht am 16.06.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Zuverlässigkeit und Mikrostruktur (IAM-ZM)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2021
Sprache Englisch
Identifikator KITopen-ID: 1000159515
Umfang 32 S.
Vorab online veröffentlicht am 27.10.2021
Nachgewiesen in arXiv
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page