KIT | KIT-Bibliothek | Impressum | Datenschutz

Identifying regions of minimal back-scattering by a relativistically-moving sphere

Whittam, Mitchell R.; Lamprianidis, Aristeidis G. ORCID iD icon; Augenstein, Yannick ORCID iD icon 1; Rockstuhl, Carsten ORCID iD icon 1
1 Institut für Theoretische Festkörperphysik (TFP), Karlsruher Institut für Technologie (KIT)

Abstract:

The far-field back-scattering amplitude of an electric field from a relativistically-moving sphere is analyzed. Contrary to prior research, we do so by expressing the fields in the helicity basis, and we highlight here its advantages when compared to the commonly-considered parity basis. With the purpose of exploring specific scattering phenomena considering relativistic effects, we identify conditions that minimize the back-scattered field, leading to a relativistic formulation of the first Kerker condition. The requirements to be satisfied by the sphere are expressed in terms of Mie angles, which constitute an effective parametrization of any possible optical response a sphere might have. We are able to identify multiple combinations of Mie angles up to octupolar order via gradient-based optimization that satisfy our newly formulated relativistic Kerker condition, yielding minima for the back-scattered energy as low as 0.016% of the average scattered energy. Our results can be extended to involve multiple particles forming a metasurface, potentially having direct implications on the design of light sails as considered by the Breakthrough Starshot Initiative.


Volltext §
DOI: 10.5445/IR/1000159929
Veröffentlicht am 28.06.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Festkörperphysik (TFP)
Karlsruhe School of Optics & Photonics (KSOP)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 11.04.2023
Sprache Englisch
Identifikator KITopen-ID: 1000159929
HGF-Programm 43.32.02 (POF IV, LK 01) Designed Optical Materials
Verlag arxiv
Umfang 9 S.
Schlagwörter Optics (physics.optics)
Nachgewiesen in arXiv
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page