KIT | KIT-Bibliothek | Impressum | Datenschutz

Dynamic Flows with Time-Dependent Capacities

Bläsius, Thomas ORCID iD icon 1; Feilhauer, Adrian 1; Westenfelder, Jannik
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract:

Dynamic network flows, sometimes called flows over time, extend the notion of network flows to include a transit time for each edge. While Ford and Fulkerson showed that certain dynamic flow problems can be solved via a reduction to static flows, many advanced models considering congestion and time-dependent networks result in NP-hard problems. To increase understanding of these advanced dynamic flow settings we study the structural and computational complexity of the canonical extensions that have time-dependent capacities or time-dependent transit times.
If the considered time interval is finite, we show that already a single edge changing capacity or transit time once makes the dynamic flow problem weakly NP-hard. In case of infinite considered time, one change in transit time or two changes in capacity make the problem weakly NP-hard. For just one capacity change, we conjecture that the problem can be solved in polynomial time. Additionally, we show the structural property that dynamic cuts and flows can become exponentially complex in the above settings where the problem is NP-hard. We further show that, despite the duality between cuts and flows, their complexities can be exponentially far apart.


Volltext §
DOI: 10.5445/IR/1000160007
Veröffentlicht am 30.06.2023
Originalveröffentlichung
DOI: 10.48550/arXiv.2302.07657
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2023
Sprache Englisch
Identifikator KITopen-ID: 1000160007
Umfang 23 S.
Vorab online veröffentlicht am 15.02.2023
Nachgewiesen in arXiv
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page