KIT | KIT-Bibliothek | Impressum | Datenschutz

State Estimation for a portal advancing mechanism by measuring the pressure in hydraulic actuators

Beiser, Sebastian ORCID iD icon 1; Michiels, Lukas ORCID iD icon 1; Geimer, Marcus ORCID iD icon 1
1 Institut für Fahrzeugsystemtechnik (FAST), Karlsruher Institut für Technologie (KIT)

Abstract:

Leg-driven machines require complex control systems to ensure stability and safety. Instead of measuring the complete system state, state estimation and prediction can be used to observe the system state in hydraulically actuated systems to replace expensive sensors. In this paper, we consider the portal advancing mechanism, a legged locomotive mechanism. The overall machine consists of two bases with three hydraulically actuated legs each and a bridge on top of them. An upper carriage with a forestry crane can move along the bridge. A system is proposed that estimates the position of the carriage. The Extended Kalman Filter (EKF) handles the non-linearity of the system and provides information about the uncertainty of the state estimation. The load on the hydraulically actuated legs is different for every carriage position on top of the mechanism. We assume that the dynamic effects of the movement can be modeled with a linear model. The state is described by the position, velocity, and acceleration of the center of gravity of the machine’s upper carriage. The non-linear relation between the state vector and the pressures in the hydraulic actuators is linearized in the innovation step of the applied filter. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000160095
Veröffentlicht am 03.07.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Fahrzeugsystemtechnik (FAST)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2023
Sprache Englisch
Identifikator ISBN: 978-952-03-2911-2
KITopen-ID: 1000160095
Erschienen in 18th Scandinavian International Conference on Fluid Power (SICFP’23). Ed.: T. Minav
Veranstaltung 18th Scandinavian International Conference on Fluid Power (SICFP 2023), Tampere, Finnland, 30.05.2023 – 01.06.2023
Projektinformation Portalschreitwerk (BMEL, 2220NR216B)
Schlagwörter Extended Kalman Filter, state estimation, system simulation, portal advancing mechanism
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page