KIT | KIT-Bibliothek | Impressum | Datenschutz

On computing high-dimensional Riemann theta functions

Chimmalgi, Shrinivas 1; Wahls, Sander ORCID iD icon
1 Communications Engineering Lab (CEL), Karlsruher Institut für Technologie (KIT)

Abstract:

Riemann theta functions play a crucial role in the field of nonlinear Fourier analysis, where they are used to realize inverse nonlinear Fourier transforms for periodic signals. The practical applicability of this approach has however been limited since Riemann theta functions are multi-dimensional Fourier series whose computation suffers from the curse of dimensionality. In this paper, we investigate several new approaches to compute Riemann theta functions with the goal of unlocking their practical potential. Our first contributions are novel theoretical lower and upper bounds on the series truncation error. These bounds allow us to rule out several of the existing approaches for the high-dimension regime. We then propose to consider low-rank tensor and hyperbolic cross based techniques. We first examine a tensor-train based algorithm which utilizes the popular scaling and squaring approach. We show theoretically that this approach cannot break the curse of dimensionality. Finally, we investigate two other tensor-train based methods numerically and compare them to hyperbolic cross based methods. Using finite-genus solutions of the Korteweg–de Vries (KdV) and nonlinear Schrödinger equation (NLS) equations, we demonstrate the accuracy of the proposed algorithms. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000160182
Veröffentlicht am 05.07.2023
Originalveröffentlichung
DOI: 10.1016/j.cnsns.2023.107266
Scopus
Zitationen: 3
Web of Science
Zitationen: 3
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Communications Engineering Lab (CEL)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 08.2023
Sprache Englisch
Identifikator ISSN: 1007-5704
KITopen-ID: 1000160182
Erschienen in Communications in Nonlinear Science and Numerical Simulation
Verlag Elsevier
Band 123
Seiten Art.-Nr.: 107266
Vorab online veröffentlicht am 18.04.2023
Schlagwörter Riemann theta function, Tensor-train decomposition, Finite-genus solutions, Korteweg–de-Vries equation, Nonlinear Schrödinger equation, Nonlinear Fourier transform
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page