KIT | KIT-Bibliothek | Impressum | Datenschutz

Functional Material Systems Enabled by Automated Data Extraction and Machine Learning

Kalhor, Payam 1,2; Jung, Nicole 3,4; Bräse, Stefan 3,4; Wöll, Christof 5; Tsotsalas, Manuel ORCID iD icon 4,5; Friederich, Pascal ORCID iD icon 1,2
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
3 Institut für Biologische und Chemische Systeme (IBCS), Karlsruher Institut für Technologie (KIT)
4 Institut für Organische Chemie (IOC), Karlsruher Institut für Technologie (KIT)
5 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)

Abstract:

The development of new functional materials is crucial for addressing global challenges such as clean energy or the discovery of new drugs and antibiotics. Functional material systems are typically composed of functional molecular building blocks, organized across multiple length scales in a hierarchical order. The large design space allows for precise tuning of properties to specific applications, but also makes it time-consuming and expensive to screen for optimal structures using traditional experimental methods. Machine learning (ML) models can potentially revolutionize the field of materials science by predicting chemical syntheses and materials properties with high accuracy. However, ML models require data to be trained and validated. Methods to automatically extract data from scientific literature make it possible to build large and diverse datasets for ML models. In this article, opportunities and challenges of data extraction and machine learning methods are discussed to accelerate the discovery of high-performing functional material systems, while ensuring that the predicted materials are stable, synthesizable, scalable, and sustainable. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000160244
Veröffentlicht am 07.07.2023
Originalveröffentlichung
DOI: 10.1002/adfm.202302630
Scopus
Zitationen: 9
Web of Science
Zitationen: 9
Dimensions
Zitationen: 12
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Biologische und Chemische Systeme (IBCS)
Institut für Funktionelle Grenzflächen (IFG)
Institut für Nanotechnologie (INT)
Institut für Organische Chemie (IOC)
Institut für Theoretische Informatik (ITI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 1616-301X, 1616-3028
KITopen-ID: 1000160244
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Advanced Functional Materials
Verlag Wiley-VCH Verlag
Band 34
Heft 20
Seiten Art.Nr.: 2302630
Vorab online veröffentlicht am 05.06.2023
Schlagwörter FAIR data, functional materials, large language models, literature data extraction, machine learning, research data management
Nachgewiesen in Dimensions
Scopus
Web of Science
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page