KIT | KIT-Bibliothek | Impressum | Datenschutz

Right-angled Coxeter groups with totally disconnected Morse boundaries

Karrer, Annette 1,2
1 Fakultät für Mathematik (MATH), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract:

This paper introduces a new class of right-angled Coxeter groups with totally disconnected Morse boundaries. We construct this class recursively by examining how the Morse boundary of a right-angled Coxeter group changes if we glue a graph to its defining graph. More generally, we present a method to construct amalgamated free products of CAT(0) groups with totally disconnected Morse boundaries that act geometrically on CAT(0) spaces that have a treelike block decomposition. We deduce a new proof for the result of Charney-Cordes-Sisto (Complete topological descriptions of certain Morse boundaries, Groups Geom. Dyn. 17(1),157–184 (2023)) that every right-angled Artin group has totally disconnected Morse boundary, and discuss concrete examples of surface amalgams studied by Ben-Zvi (Boundaries of groups with isolated flats are path connected. arXiv:1909.12360, 2019).


Verlagsausgabe §
DOI: 10.5445/IR/1000160334
Veröffentlicht am 10.07.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Mathematik (MATH)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 08.2023
Sprache Englisch
Identifikator ISSN: 0046-5755, 1572-9168
KITopen-ID: 1000160334
Erschienen in Geometriae Dedicata
Verlag Springer
Band 217
Heft 4
Seiten Art.-Nr.: 71
Vorab online veröffentlicht am 10.06.2023
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page