KIT | KIT-Bibliothek | Impressum | Datenschutz

A robust collision source method for rank adaptive dynamical low-rank approximation in radiation therapy

Kusch, Jonas 1; Stammer, Pia ORCID iD icon 1
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract:

Deterministic models for radiation transport describe the density of radiation particles moving through a background material. In radiation therapy applications, the phase space of this density is composed of energy, spatial position and direction of flight. The resulting six-dimensional phase space prohibits fine numerical discretizations, which are essential for the construction of accurate and reliable treatment plans. In this work, we tackle the high dimensional phase space through a dynamical low-rank approximation of the particle density. Dynamical low-rank approximation (DLRA) evolves the solution on a low-rank manifold in time. Interpreting the energy variable as a pseudo-time lets us employ the DLRA framework to represent the solution of the radiation transport equation on a low-rank manifold for every energy. Stiff scattering terms are treated through an efficient implicit energy discretization and a rank adaptive integrator is chosen to dynamically adapt the rank in energy. To facilitate the use of boundary conditions and reduce the overall rank, the radiation transport equation is split into collided and uncollided particles through a collision source method. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000160533
Veröffentlicht am 13.07.2023
Originalveröffentlichung
DOI: 10.1051/m2an/2022090
Scopus
Zitationen: 8
Web of Science
Zitationen: 9
Dimensions
Zitationen: 18
Cover der Publikation
Zugehörige Institution(en) am KIT Scientific Computing Center (SCC)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 03.2023
Sprache Englisch
Identifikator ISSN: 2822-7840, 2804-7214
KITopen-ID: 1000160533
HGF-Programm 46.21.02 (POF IV, LK 01) Cross-Domain ATMLs and Research Groups
Erschienen in ESAIM: Mathematical Modelling and Numerical Analysis
Verlag EDP Sciences
Band 57
Heft 2
Seiten 865–891
Vorab online veröffentlicht am 30.03.2023
Nachgewiesen in Web of Science
Dimensions
Scopus
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page