KIT | KIT-Bibliothek | Impressum | Datenschutz

Thermomechanically coupled theory in the context of the multiphase-field method

Prahs, Andreas 1; Reder, Martin ORCID iD icon 1; Schneider, Daniel ORCID iD icon 2; Nestler, Britta 1,2
1 Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

The modeling and simulation of microstructure evolution is usually subject to the multiphase-field method. In this context, thermomechanical coupling is often neglected, even when non-isothermal phase transformations are considered. Using a simplified example, the present work shows that this assumption is not justified for small strains and small strain rates with respect to a non-vanishing coefficient of thermal expansion. To this end, both a thermomechanically coupled and a thermomechanically weakly coupled theory are briefly revisited. The difference between the coupled and the weakly coupled theory regarding the growth of an inclusion is discussed. The considered elastoplastic inclusion, subjected to eigenstrains, is embedded in an elastoplastic matrix under load. It is shown, that the weakly coupled theory overestimates the growth of the inclusion, and, thus, the volume concentration, compared to the coupled theory. Moreover, only the application of the coupled theory reflects a load-induced anisotropic growth of the inclusion, which exhibits an isotropic material behavior, due to non-vanishing uniaxial Neumann boundary conditions. ... mehr


Originalveröffentlichung
DOI: 10.1016/j.ijmecsci.2023.108484
Scopus
Zitationen: 5
Dimensions
Zitationen: 7
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 01.11.2023
Sprache Englisch
Identifikator ISSN: 0020-7403, 1879-2162
KITopen-ID: 1000160538
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in International Journal of Mechanical Sciences
Verlag Elsevier
Band 257
Seiten Art.-Nr.: 108484
Vorab online veröffentlicht am 03.06.2023
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page