KIT | KIT-Bibliothek | Impressum | Datenschutz

Tail processes and tail measures: An approach via Palm calculus

Last, Günter 1
1 Institut für Stochastik (STOCH), Karlsruher Institut für Technologie (KIT)

Abstract:

Using an intrinsic approach, we study some properties of random fields which appear as tail fields of regularly varying stationary random fields. The index set is allowed to be a general locally compact Hausdorff Abelian group $\mathbb{G}$. The values are taken in a measurable cone, equipped with a pseudo norm. We first discuss some Palm formulas for the exceedance random measure $ξ$ associated with a stationary (measurable) random field $Y=(Y_s)_{s∈G}$. It is important to allow the underlying stationary measure to be $σ$-finite. Then we proceed to a random field (defined on a probability space) which is spectrally decomposable, in a sense which is motivated by extreme value theory. We characterize mass-stationarity of the exceedance random measure in terms of a suitable version of the classical Mecke equation. We also show that the associated stationary measure is homogeneous, that is a tail measure. We then proceed with establishing and studying the spectral representation of stationary tail measures and with characterizing a moving shift representation. Finally we discuss anchoring maps and the candidate extremal index.


Verlagsausgabe §
DOI: 10.5445/IR/1000160703
Veröffentlicht am 18.07.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Stochastik (STOCH)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2023
Sprache Englisch
Identifikator ISSN: 1386-1999, 1572-915X
KITopen-ID: 1000160703
Erschienen in Extremes
Verlag Springer
Band 26
Heft 4
Seiten 715–746
Vorab online veröffentlicht am 27.06.2023
Schlagwörter Tail process, Exceedances, Tail measure, Spectral representation, Random measure, Palm measure, Stationarity, Mass-stationarity, Locally compact Abelian group, Anchoring map, Candidate extremal index
Nachgewiesen in Dimensions
Web of Science
Scopus
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page