KIT | KIT-Bibliothek | Impressum | Datenschutz

Low regularity well-posedness for KP-I equations: the dispersion-generalized case

Sanwal, Akansha; Schippa, Robert 1
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract:

We prove new well-posedness results for dispersion-generalized Kadomtsev–Petviashvili I equations in $\mathbb{R}^2$, which family links the classical KP-I equation with the fifth order KP-I equation. For strong enough dispersion, we show global well-posedness in $L^2(\mathbb{R}^2)$. To this end, we combine resonance and transversality considerations with Strichartz estimates and a nonlinear Loomis–Whitney inequality. Moreover, we prove that for small dispersion, the equations cannot be solved via Picard iteration. In this case, we use an additional frequency dependent time localization.


Verlagsausgabe §
DOI: 10.5445/IR/1000160908
Veröffentlicht am 25.07.2023
Originalveröffentlichung
DOI: 10.1088/1361-6544/ace1cc
Scopus
Zitationen: 2
Web of Science
Zitationen: 1
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 08.2023
Sprache Englisch
Identifikator ISSN: 0951-7715, 1361-6544
KITopen-ID: 1000160908
Erschienen in Nonlinearity
Verlag Institute of Physics Publishing Ltd (IOP Publishing Ltd)
Band 36
Heft 8
Seiten 4342–4383
Vorab online veröffentlicht am 07.07.2023
Schlagwörter KP-I equation, nonlinear Loomis–Whitney inequality, local well-posedness, short-time Fourier restriction norm method
Nachgewiesen in Web of Science
Dimensions
Scopus
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page