KIT | KIT-Bibliothek | Impressum | Datenschutz

POET: A Self-learning Framework for PROFINET Industrial Operations Behaviour

Meshram, Ankush ORCID iD icon 1; Karch, Markus; Haas, Christian; Beyerer, Jürgen 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

Since 2010, multiple cyber incidents on industrial infrastructure, such as Stuxnet and CrashOverride, have exposed the vulnerability of Industrial Control Systems (ICS) to cyber threats. The industrial systems are commissioned for longer duration amounting to decades, often resulting in non-compliance to technological advancements in industrial cybersecurity mechanisms. The unavailability of network infrastructure information makes designing the security policies or configuring the cybersecurity countermeasures such as Network Intrusion Detection Systems (NIDS) challenging. An empirical solution is to self-learn the network infrastructure information of an industrial system from its monitored network traffic to make the network transparent for downstream analyses tasks such as anomaly detection. In this work, a Python-based industrial communication paradigm-aware framework, named PROFINET Operations Enumeration and Tracking (POET), that enumerates different industrial operations executed in a deterministic order of a PROFINET-based industrial system is reported. The operation-driving industrial network protocol frames are dissected for enumeration of the operations. ... mehr


Volltext §
DOI: 10.5445/IR/1000161005
Veröffentlicht am 27.07.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2023
Sprache Englisch
Identifikator KITopen-ID: 1000161005
Umfang 17 S.
Vorab online veröffentlicht am 29.04.2023
Schlagwörter Network Security, Cyber-Physical System, Intrusion Detection
Nachgewiesen in Dimensions
arXiv
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page