KIT | KIT-Bibliothek | Impressum | Datenschutz

Power-Aware Training for Energy-Efficient Printed Neuromorphic Circuits

Zhao, Haibin ORCID iD icon 1; Pal, Priyanjana ORCID iD icon 2; Hefenbrock, Michael; Beigl, Michael ORCID iD icon 1; Tahoori, Mehdi 2
1 Institut für Telematik (TM), Karlsruher Institut für Technologie (KIT)
2 Institut für Technische Informatik (ITEC), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

There is an increasing demand for next-generation flexible electronics in emerging low-cost applications such as smart packaging and smart bandages, where conventional silicon electronics cannot enter due to cost and form factor. In these domains, ultra-low-cost, high flexibility, and customizability are required. In this regard, printed electronics emerge as a complementary solution offering the aforementioned properties. To respect the constraints in those application scenarios and equip printed devices with the fundamental capability to process information, analog printed neuromorphic circuits offer multiple advantages, including strong expressiveness, streamlined circuit primitives, and a highly efficient machine learning-based design process. In this work, we focus on designing low-power printed neuromorphic circuits at the algorithmic level. By developing accurate power models for the circuit primitives, the power consumption can be considered into the design process. Subsequently, Pareto analysis is employed to examine the relationship between accuracy and power consumption. Experimental results reveal that, with the proposed approach, 2× reduction of the power consumption can be realized while maintaining 95% of classification accuracy. ... mehr


Preprint §
DOI: 10.5445/IR/1000161182
Veröffentlicht am 04.08.2023
Originalveröffentlichung
DOI: 10.1109/ICCAD57390.2023.10323917
Scopus
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Informatik (ITEC)
Institut für Telematik (TM)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 02.11.2023
Sprache Englisch
Identifikator ISBN: 979-8-3503-2225-5
ISSN: 1558-2434
KITopen-ID: 1000161182
Erschienen in 42nd IEEE/ACM International Conference on Computer-Aided Design
Veranstaltung 42nd IEEE/ACM International Conference On Computer Aided Design (ICCAD 2023), San Francisco, CA, USA, 29.10.2023 – 02.11.2023
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Serie Digest of technical papers (IEEE/ACM International Conference on Computer-Aided Design)
Nachgewiesen in Dimensions
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page