KIT | KIT-Bibliothek | Impressum | Datenschutz

Anomaly Detection with Model Contradictions for Autonomous Driving

Geppert, Vincent 1
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)

Abstract:

Anomaly detection is a critical aspect of safe autonomous driving systems, where detecting and understanding uncommon and unpredictable scenarios, often referred to as corner cases or anomalies, is crucial for ensuring the safety of passengers and pedestrians. In this bachelor's thesis, I quantitatively evaluate an anomaly detection method proposed by Sartoris that utilizes lidar data for detecting anomalies. The method combines a supervised and a self-supervised part to detect motion anomalies in the environment. By analyzing the discrepancies between the two parts, the detection method identifies points that deviate from the expected behavior, indicating potential anomalies.

This evaluation utilizes the CODA dataset, which provides the only anomaly dataset including lidar data. However, the corner cases are only labeled in the form of 2D bounding boxes. To address this limitation, I convert the 2D bounding boxes in the CODA dataset into 3D point-wise labels. The CODA dataset is then translated into the KITTI-odometry data format suitable for evaluating Sartoris' method. Additionally, improvements are proposed for the clustering algorithms used to create 3D point-wise labels, aiming to reduce the need for manual verification.
... mehr


Volltext §
DOI: 10.5445/IR/1000161266
Veröffentlicht am 09.08.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Hochschulschrift
Publikationsdatum 01.08.2023
Sprache Englisch
Identifikator KITopen-ID: 1000161266
Verlag Karlsruher Institut für Technologie (KIT)
Umfang XI, 58 S.
Art der Arbeit Abschlussarbeit - Bachelor
Referent/Betreuer Bogdoll, Daniel
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page