KIT | KIT-Bibliothek | Impressum | Datenschutz

Effect of Wiper Edge Geometry on Machining Performance While Turning AISI 1045 Steel in Dry Conditions Using the VIKOR-ML Approach

Abbas, Adel T.; Sharma, Neeraj; Soliman, Mahmoud S.; El Rayes, Magdy M.; Sharma, Rakesh Chandmal; Elkaseer, Ahmed 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract:

AISI 1045 can be machined well in all machining operations, namely drilling, milling, turning, broaching and grinding. It has many applications, such as crankshafts, rollers, spindles, shafts, and gears. Wiper geometry has a great influence on cutting forces (Fr, Ff, Fc and R), temperature, material removal rate (MRR) and surface roughness (Ra). Wiper inserts are used to achieve good surface quality and avoid the need to buy a grinding machine. In this paper, an optimization-based investigation into previously reported results for Taguchi’s based L27 orthogonal array experimentations was conducted to further examine effect of the edge geometry on the turning performance of AISI 1045 steel in dry conditions. Three input parameters used in current research include the cutting speed (Vc), feed (f) and depth of cut (ap), while performance measures in this research were Ra, Fr, Ff, Fc, R, temperature (temp) and MRR. The Vise Kriterijumska Optimizacija Kompromisno Resenje (VIKOR) method was used to normalize and convert all the performance measures to a single response known as the VIKOR-based performance index (Vi). The machine learning (ML) approach was used for the prediction and optimization of the input variables. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000161331
Veröffentlicht am 11.08.2023
Originalveröffentlichung
DOI: 10.3390/machines11070719
Scopus
Zitationen: 4
Web of Science
Zitationen: 3
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 2075-1702
KITopen-ID: 1000161331
HGF-Programm 43.31.02 (POF IV, LK 01) Devices and Applications
Erschienen in Machines
Verlag MDPI
Band 11
Heft 7
Seiten Art.-Nr.: 719
Vorab online veröffentlicht am 06.07.2023
Schlagwörter cutting forces; machine learning; Ra; VIKOR; wiper insert
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page