KIT | KIT-Bibliothek | Impressum | Datenschutz

Customized Uncertainty Quantification of Parking Duration Predictions for EV Smart Charging

Phipps, Kaleb ORCID iD icon 1; Schwenk, Karl ORCID iD icon; Briegel, Benjamin; Mikut, Ralf ORCID iD icon 1; Hagenmeyer, Veit ORCID iD icon 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract:

As Electric Vehicle (EV) demand increases, so does the demand for efficient Smart Charging (SC) applications. However, SC is only acceptable if the EV user’s mobility requirements and risk preferences are fulfilled, i.e. their respective EV has enough charge to make their planned journey. To fulfill these requirements and risk preferences, the SC application must consider the predicted parking duration at a given location and the uncertainty associated with this prediction. However, certain regions of uncertainty are more critical than others for user-centric SC applications, and therefore, such uncertainty must be explicitly quantified. Therefore, the present paper presents multiple approaches to customize the uncertainty quantification of parking duration predictions specifically for EV user-centric SC applications. We decompose parking duration prediction errors into a critical component which results in undercharging, and a non-critical component. Furthermore, we derive quantile-based security levels that can minimize the probability of a critical error given a user’s risk preferences. We evaluate our customized uncertainty quantification with four different probabilistic prediction models on an openly available semi-synthetic mobility data set and a data set consisting of real EV trips. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000161419
Veröffentlicht am 16.08.2023
Originalveröffentlichung
DOI: 10.1109/JIOT.2023.3299201
Scopus
Zitationen: 1
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 2327-4662, 2372-2541
KITopen-ID: 1000161419
HGF-Programm 37.12.02 (POF IV, LK 01) Design,Operation & Digitalization of the Future Energy Grids
Erschienen in IEEE Internet of Things Journal
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Band 10
Heft 23
Seiten 20649-20661
Vorab online veröffentlicht am 26.07.2023
Schlagwörter Smart Charging, Uncertainty, Parking Duration, Probabilistic Predictions
Nachgewiesen in Dimensions
Scopus
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page