KIT | KIT-Bibliothek | Impressum | Datenschutz

Quantifying and Interpreting Uncertainty in Time Series Forecasting

Phipps, Kaleb ORCID iD icon 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

For a wide variety of sectors, including energy, retail, and mobility, time series data is increasingly gaining importance. Within these sectors, critical applications include dispatch management in energy systems, warehouse storage optimisation in the retail sector, and traffic congestion management within the mobility sector. However, for such applications to be successful, they require reliable and trustworthy forecasts of the relevant time series. Unfortunately, any forecast of the future contains an inherent component of uncertainty. Therefore, to ensure these forecasts are trustworthy, they should quantify this uncertainty, i.e., probabilistic forecasts. However, quantifying this uncertainty through a probabilistic forecast may not sufficiently increase the trust in the forecast. The quantified uncertainty should also be interpreted in a manner that is useful for the considered application.

Therefore, the present dissertation takes a holistic approach by considering both quantifying and interpreting uncertainty in time series forecasts. To quantify uncertainty, we first investigate whether the meteorological uncertainty affecting many time series can be linked to the uncertainty in the forecast time series. ... mehr


Volltext §
DOI: 10.5445/IR/1000171223
Veröffentlicht am 03.06.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Institut für Programmstrukturen und Datenorganisation (IPD)
Publikationstyp Hochschulschrift
Publikationsdatum 03.06.2024
Sprache Englisch
Identifikator KITopen-ID: 1000171223
HGF-Programm 37.12.02 (POF IV, LK 01) Design,Operation & Digitalization of the Future Energy Grids
Verlag Karlsruher Institut für Technologie (KIT)
Umfang xx, 205 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Informatik (INFORMATIK)
Institut Institut für Automation und angewandte Informatik (IAI)
Prüfungsdatum 12.12.2023
Projektinformation GRK 2153/2 (DFG, DFG KOORD, GRK 2153/2)
Schlagwörter uncertainty quantification, time series forecasts, interpreting uncertainty
Relationen in KITopen
Referent/Betreuer Hagenmeyer, Veit
Mitsos, Alexander
Mikut, Ralf
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page