KIT | KIT-Bibliothek | Impressum | Datenschutz

Training Quantized Neural Networks with ADMM Approach

Xue, Ma 1
1 Fakultät für Informatik (INFORMATIK), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Deep learning models have achieved remarkable success in various learning tasks, but their high computational costs pose challenges for deployment in resource-limited scenarios. In this paper, we focus on addressing this issue by quantizing deep learning models, where network weights are represented by a smaller number of bits. We formulate this problem as a discrete optimization problem and draw inspiration from the Alternating Direction Method of Multipliers to optimize the parameters in a neural network. We introduce two approaches to quantize neural networks using the Alternating Direction Method of Multipliers algorithm. The first approach is a gradient-free optimization method for training the quantized neural network. It avoids many problems of gradient descent, such as saturation effects and saddle points. In contrast, the second approach is a gradient-based method to quantize the neural network layerwisely using Alternating Direction Method of Multipliers based on a pre-trained neural network. After each layer is quantized, the parameters of non-quantized layers are updated to compensate for the loss of accuracy.


Volltext §
DOI: 10.5445/IR/1000161571
Veröffentlicht am 21.08.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Telematik (TM)
Publikationstyp Hochschulschrift
Publikationsdatum 01.08.2023
Sprache Englisch
Identifikator KITopen-ID: 1000161571
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 75 S.
Art der Arbeit Abschlussarbeit - Master
Prüfungsdaten 19.07.2023
Referent/Betreuer Zhao, Haibin
Zhou, Yexu
Beigl, Michael
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page