KIT | KIT-Bibliothek | Impressum | Datenschutz

A gamma tail statistic and its asymptotics

Iwashita, Toshiya; Klar, Bernhard ORCID iD icon 1
1 Institut für Stochastik (STOCH), Karlsruher Institut für Technologie (KIT)

Abstract:

Asmussen and Lehtomaa [Distinguishing log-concavity from heavy tails. Risks 5(10), 2017] introduced an interesting function g which is able to distinguish between log-convex and log-concave tail behavior of distributions, and proposed a randomized estimator for g. In this paper, we show that g can also be seen as a tool to detect gamma distributions or distributions with gamma tail. We construct a more efficient estimator ̂ gn based on U-statistics, propose several estimators of the (asymptotic) variance of $\hat{g}_n$ and study their performance by simulations. Finally, the methods are applied to several datasets of daily precipitation.


Verlagsausgabe §
DOI: 10.5445/IR/1000161747
Veröffentlicht am 30.08.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Stochastik (STOCH)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 05.2024
Sprache Englisch
Identifikator ISSN: 0039-0402, 1467-9574
KITopen-ID: 1000161747
Erschienen in Statistica Neerlandica
Verlag John Wiley and Sons
Band 78
Heft 2
Seiten 264–280
Vorab online veröffentlicht am 21.08.2023
Schlagwörter asymptotic relative efficiency, gamma distribution, tail plot, U-statistics
Nachgewiesen in Dimensions
Web of Science
Scopus
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page