KIT | KIT-Bibliothek | Impressum | Datenschutz

Shot noise reduction in radiographic and tomographic multi-channel imaging with self-supervised deep learning

Zharov, Yaroslav 1; Ametova, Evelina 1; Spiecker, Rebecca ORCID iD icon 1,2; Baumbach, Tilo 1,2; Burca, Genoveva; Heuveline, Vincent
1 Laboratorium für Applikationen der Synchrotronstrahlung (LAS), Karlsruher Institut für Technologie (KIT)
2 Institut für Photonenforschung und Synchrotronstrahlung (IPS), Karlsruher Institut für Technologie (KIT)

Abstract:

Shot noise is a critical issue in radiographic and tomographic imaging, especially when additional constraints lead to a significant reduction of the signal-to-noise ratio. This paper presents a method for improving the quality of noisy multi-channel imaging datasets, such as data from time or energy-resolved imaging, by exploiting structural similarities between channels. To achieve that, we broaden the application domain of the Noise2Noise self-supervised denoising approach. The method draws pairs of samples from a data distribution with identical signals but uncorrelated noise. It is applicable to multi-channel datasets if adjacent channels provide images with similar enough information but independent noise. We demonstrate the applicability and performance of the method via three case studies, namely spectroscopic X-ray tomography, energy-dispersive neutron tomography, and in vivo X-ray cine-radiography.


Download
Originalveröffentlichung
DOI: 10.1364/OE.492221
Scopus
Zitationen: 1
Web of Science
Zitationen: 1
Dimensions
Zitationen: 1
Zugehörige Institution(en) am KIT Institut für Photonenforschung und Synchrotronstrahlung (IPS)
Laboratorium für Applikationen der Synchrotronstrahlung (LAS)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 31.07.2023
Sprache Englisch
Identifikator ISSN: 1094-4087
KITopen-ID: 1000161956
HGF-Programm 56.13.11 (POF IV, LK 01) Building Blocks of Life: Structure and Function
Erschienen in Optics Express
Verlag Optica Publishing Group (OSA)
Band 31
Heft 16
Seiten 26226 – 26244
Vorab online veröffentlicht am 24.07.2023
Nachgewiesen in Dimensions
Scopus
Web of Science
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page