KIT | KIT-Bibliothek | Impressum | Datenschutz

Shot noise reduction in radiographic and tomographic multi-channel imaging with self-supervised deep learning

Zharov, Yaroslav 1; Ametova, Evelina; Spiecker, Rebecca ORCID iD icon 1,2; Baumbach, Tilo 1,2; Burca, Genoveva; Heuveline, Vincent
1 Laboratorium für Applikationen der Synchrotronstrahlung (LAS), Karlsruher Institut für Technologie (KIT)
2 Institut für Photonenforschung und Synchrotronstrahlung (IPS), Karlsruher Institut für Technologie (KIT)

Abstract:

Noise is an important issue for radiographic and tomographic imaging techniques. It becomes particularly critical in applications where additional constraints force a strong reduction of the Signal-to-Noise Ratio (SNR) per image. These constraints may result from limitations on the maximum available flux or permissible dose and the associated restriction on exposure time. Often, a high SNR per image is traded for the ability to distribute a given total exposure capacity per pixel over multiple channels, thus obtaining additional information about the object by the same total exposure time. These can be energy channels in the case of spectroscopic imaging or time channels in the case of time-resolved imaging. In this paper, we report on a method for improving the quality of noisy multi-channel (time or energy-resolved) imaging datasets. The method relies on the recent Noise2Noise (N2N) self-supervised denoising approach that learns to predict a noise-free signal without access to noise-free data. N2N in turn requires drawing pairs of samples from a data distribution sharing identical signals while being exposed to different samples of random noise. ... mehr


Volltext §
DOI: 10.5445/IR/1000162207
Veröffentlicht am 14.09.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Photonenforschung und Synchrotronstrahlung (IPS)
Laboratorium für Applikationen der Synchrotronstrahlung (LAS)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2023
Sprache Englisch
Identifikator KITopen-ID: 1000162207
HGF-Programm 56.13.11 (POF IV, LK 01) Building Blocks of Life: Structure and Function
Umfang 19 S.
Vorab online veröffentlicht am 25.03.2023
Nachgewiesen in arXiv
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page