KIT | KIT-Bibliothek | Impressum | Datenschutz

Applying Random Forests in Federated Learning: A Synthesis of Aggregation Techniques

Bodynek, Mattis; Leiser, Florian ORCID iD icon 1; Thiebes, Scott ORCID iD icon 1; Sunyaev, Ali 1
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)

Abstract:

Random forests (RFs) are a versatile choice for many machine learning applications. Despite their promising efficiency and simplicity, RFs are seldom used in collaborative scenarios like federated learning (FL). In FL, training data is scattered among a federation of clients. To train federated models, a central server aggregates inputs from all clients. For RFs as non-parametric models, coordinating the training phase and aggregating the global model is non-trivial. Design choices regarding the evaluation of candidate splits and the aggregation of decision trees prove to be context-specific. In this work, we identify aggregation techniques proposed in extant literature. The identified techniques are categorized across dimensions like training coordination, inference process, and privacy. We find an important distinction between synchronous and asynchronous techniques and evaluate the practical suitability of aggregation techniques by comparing advantages and drawbacks for prediction robustness and technical feasibility. Our results facilitate design choices of future federated RFs.​


Verlagsausgabe §
DOI: 10.5445/IR/1000162020
Veröffentlicht am 08.03.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 18.09.2023
Sprache Englisch
Identifikator KITopen-ID: 1000162020
Erschienen in Wirtschaftsinformatik 2023 Proceedings
Veranstaltung 18. Internationale Tagung Wirtschaftsinformatik (WI 2023), Paderborn, Deutschland, 18.09.2023 – 21.09.2023
Verlag AIS eLibrary (AISeL)
Serie Article no: 253
Bemerkung zur Veröffentlichung in press
Schlagwörter Random Forest, Federated Learning, Literature Review​
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page