KIT | KIT-Bibliothek | Impressum | Datenschutz

Enhanced universal kriging for transformed input parameter spaces

Fischer, Matthias ORCID iD icon 1; Proppe, Carsten 1
1 Institut für Technische Mechanik (ITM), Karlsruher Institut für Technologie (KIT)

Abstract:

With computational models becoming more expensive and complex, surrogate models have gained increasing attention in many scientific disciplines and are often necessary to conduct sensitivity studies, parameter optimization etc. In the scientific discipline of uncertainty quantification (UQ), model input quantities are often described by probability distributions. For the construction of surrogate models, space-filling designs are generated in the input space to define training points, and evaluations of the computational model at these points are then conducted. The physical parameter space is often transformed into an i.i.d. uniform input space in order to apply space-filling training procedures in a sensible way. Due to this transformation surrogate modeling techniques tend to suffer with regard to their prediction accuracy. Therefore, a new method is proposed in this paper where input parameter transformations are applied to basis functions for universal kriging. To speed up hyperparameter optimization for universal kriging, suitable expressions for efficient gradient-based optimization are developed. Several benchmark functions are investigated and the proposed method is compared with conventional methods.


Volltext §
DOI: 10.5445/IR/1000162216
Veröffentlicht am 14.09.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Mechanik (ITM)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2023
Sprache Englisch
Identifikator KITopen-ID: 1000162216
Umfang 18 S.
Vorab online veröffentlicht am 13.07.2023
Nachgewiesen in arXiv
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page