KIT | KIT-Bibliothek | Impressum | Datenschutz

Data‐Driven Virtual Material Analysis and Synthesis for Solid Electrolyte Interphases

Rajagopal, Deepalaxmi 1,2; Koeppe, Arnd ORCID iD icon 1,2; Esmaeilpour, Meysam ORCID iD icon 2; Selzer, Michael 1,2; Wenzel, Wolfgang 2; Stein, Helge ORCID iD icon; Nestler, Britta 1,2
1 Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

Solid electrolyte interphases (SEIs) form as reduction products at the electrodes and strongly affect battery performance and safety. Because SEI formation poses a highly nonlinear, complex multi-physics problem over various lengths and time scales, traditional modeling approaches struggle to characterize SEI evolution solely with existing physical properties. To improve the characterization of SEIs, it proposes a data-driven strategy for a virtual material design that learns to represent and characterize SEI formation with physical and data-driven properties from kinetic Monte Carlo simulations. A Variational AutoEncoder with a property regressor learns data-driven properties, which represent SEI configurations and correlate with physical target properties. This new neural network design encodes the high-dimensional structural and reaction spaces into a lower-dimensional latent space, while the property regressor orders the latent space by physical target properties. The model achieves high correlation scores between target and predicted properties from latent representations, thereby proving that the data-driven properties enrich the expressiveness of SEI characterizations.


Verlagsausgabe §
DOI: 10.5445/IR/1000162429
Veröffentlicht am 22.09.2023
Originalveröffentlichung
DOI: 10.1002/aenm.202301985
Scopus
Zitationen: 3
Web of Science
Zitationen: 3
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 27.10.2023
Sprache Englisch
Identifikator ISSN: 1614-6832, 1614-6840
KITopen-ID: 1000162429
HGF-Programm 38.02.01 (POF IV, LK 01) Fundamentals and Materials
Erschienen in Advanced Energy Materials
Verlag Wiley-VCH Verlag
Band 13
Heft 40
Seiten Art.-Nr.: 2301985
Vorab online veröffentlicht am 12.09.2023
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page