KIT | KIT-Bibliothek | Impressum | Datenschutz

Scoring epidemiological forecasts on transformed scales

Bosse, Nikos I. ; Abbott, Sam; Cori, Anne; van Leeuwen, Edwin; Bracher, Johannes 1; Funk, Sebastian
1 Institut für Volkswirtschaftslehre (ECON), Karlsruher Institut für Technologie (KIT)

Abstract:

Forecast evaluation is essential for the development of predictive epidemic models and can inform their use for public health decision-making. Common scores to evaluate epidemiological forecasts are the Continuous Ranked Probability Score (CRPS) and the Weighted Interval Score (WIS), which can be seen as measures of the absolute distance between the forecast distribution and the observation. However, applying these scores directly to predicted and observed incidence counts may not be the most appropriate due to the exponential nature of epidemic processes and the varying magnitudes of observed values across space and time. In this paper, we argue that transforming counts before applying scores such as the CRPS or WIS can effectively mitigate these difficulties and yield epidemiologically meaningful and easily interpretable results. Using the CRPS on log-transformed values as an example, we list three attractive properties: Firstly, it can be interpreted as a probabilistic version of a relative error. Secondly, it reflects how well models predicted the time-varying epidemic growth rate. And lastly, using arguments on variance-stabilizing transformations, it can be shown that under the assumption of a quadratic mean-variance relationship, the logarithmic transformation leads to expected CRPS values which are independent of the order of magnitude of the predicted quantity. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000162436
Veröffentlicht am 22.09.2023
Originalveröffentlichung
DOI: 10.1371/journal.pcbi.1011393
Scopus
Zitationen: 7
Web of Science
Zitationen: 5
Dimensions
Zitationen: 15
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Volkswirtschaftslehre (ECON)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 1553-7358, 1553-734X
KITopen-ID: 1000162436
Erschienen in PLOS Computational Biology
Verlag Public Library of Science (PLoS)
Band 19
Heft 8
Seiten Art.-Nr.: e1011393
Vorab online veröffentlicht am 29.08.2023
Nachgewiesen in Dimensions
Web of Science
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 3 – Gesundheit und Wohlergehen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page