KIT | KIT-Bibliothek | Impressum | Datenschutz

Intersections of Poisson $k$-flats in constant curvature spaces

Betken, Carina; Hug, Daniel ORCID iD icon 1; Thäle, Christoph
1 Institut für Stochastik (STOCH), Karlsruher Institut für Technologie (KIT)

Abstract:

Poisson processes in the space of k-dimensional totally geodesic subspaces ($k$-flats) in a $d$-dimensional standard space of constant curvature $κ∈{−1,0,1}$ are studied, whose distributions are invariant under the isometries of the space. We consider the intersection processes of order m together with their $(d−m(d−k))$-dimensional Hausdorff measure within a geodesic ball of radius $r$. Asymptotic normality for fixed r is shown as the intensity of the underlying Poisson process tends to infinity for all $m$ satisfying $d−m(d−k)≥0. For κ∈{−1,0}$ the problem is also approached in the set-up where the intensity is fixed and $r$ tends to infinity. Again, if $2k≤d+1$ a central limit theorem is shown for all possible values of $m$. However, while for $κ=0$ asymptotic normality still holds if $2k>d+1$, we prove for $κ=−1$ convergence to a non-Gaussian infinitely divisible limit distribution in the special case $m=1$. The proof of asymptotic normality is based on the analysis of variances and general bounds available from the Malliavin--Stein method. We also show for general $κ∈{−1,0,1}$ that, roughly speaking, the variances within a general observation window $W$ are maximal if and only if $W$ is a geodesic ball having the same volume as $W$. ... mehr


Volltext §
DOI: 10.5445/IR/1000162445
Veröffentlicht am 21.09.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Stochastik (STOCH)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2023
Sprache Englisch
Identifikator KITopen-ID: 1000162445
Umfang 31 S.
Vorab online veröffentlicht am 19.02.2023
Schlagwörter laschke–Petkantschin formula, central limit theorem, constant curvature space, Malliavin–Stein method, integral geometry, stochastic geometry, Poisson k-flat process, random measure, U-statistic
Nachgewiesen in arXiv
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page