KIT | KIT-Bibliothek | Impressum | Datenschutz

Intersections of Poisson k-flats in constant curvature spaces

Betken, Carina; Hug, Daniel ORCID iD icon 1; Thäle, Christoph
1 Institut für Stochastik (STOCH), Karlsruher Institut für Technologie (KIT)

Abstract:

Poisson processes in the space of k-dimensional totally geodesic subspaces (k-flats) in a d-dimensional standard space of constant curvature κ1,0,1 are studied, whose distributions are invariant under the isometries of the space. We consider the intersection processes of order m together with their (dm(dk))-dimensional Hausdorff measure within a geodesic ball of radius r. Asymptotic normality for fixed r is shown as the intensity of the underlying Poisson process tends to infinity for all m satisfying dm(dk)0.Forκ1,0 the problem is also approached in the set-up where the intensity is fixed and r tends to infinity. Again, if 2kd+1 a central limit theorem is shown for all possible values of m. However, while for κ=0 asymptotic normality still holds if 2k>d+1, we prove for κ=1 convergence to a non-Gaussian infinitely divisible limit distribution in the special case m=1. The proof of asymptotic normality is based on the analysis of variances and general bounds available from the Malliavin--Stein method. We also show for general κ1,0,1 that, roughly speaking, the variances within a general observation window W are maximal if and only if W is a geodesic ball having the same volume as W. ... mehr

Zugehörige Institution(en) am KIT Institut für Stochastik (STOCH)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2023
Sprache Englisch
Identifikator KITopen-ID: 1000162445
Umfang 31 S.
Vorab online veröffentlicht am 19.02.2023
Schlagwörter laschke–Petkantschin formula, central limit theorem, constant curvature space, Malliavin–Stein method, integral geometry, stochastic geometry, Poisson k-flat process, random measure, U-statistic
Nachgewiesen in arXiv
OpenAlex
Dimensions
Relationen in KITopen

Volltext §
DOI: 10.5445/IR/1000162445
Veröffentlicht am 21.09.2023
Seitenaufrufe: 66
seit 21.09.2023
Downloads: 26
seit 04.10.2023
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page