KIT | KIT-Bibliothek | Impressum | Datenschutz

Efficient Yao Graph Construction

Funke, Daniel 1; Sanders, Peter ORCID iD icon 2; Georgiadis, Loukas [Hrsg.]
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract:

Yao graphs are geometric spanners that connect each point of a given point set to its nearest neighbor in each of k cones drawn around it. Yao graphs were introduced to construct minimum spanning trees in d dimensional spaces. Moreover, they are used for instance in topology control in wireless networks. An optimal 𝒪(n log n)-time algorithm to construct Yao graphs for a given point set has been proposed in the literature but - to the best of our knowledge - never been implemented. Instead, algorithms with a quadratic complexity are used in popular packages to construct these graphs. In this paper we present the first implementation of the optimal Yao graph algorithm. We engineer the data structures required to achieve the 𝒪(n log n) time bound and detail algorithmic adaptations necessary to take the original algorithm from theory to practice. We propose a priority queue data structure that separates static and dynamic events and might be of independent interest for other sweepline algorithms. Additionally, we propose a new Yao graph algorithm based on a uniform grid data structure that performs well for medium-sized inputs. We evaluate our implementations on a wide variety of synthetic and real-world datasets and show that our implementation outperforms current publicly available implementations by at least an order of magnitude.


Verlagsausgabe §
DOI: 10.5445/IR/1000162489
Veröffentlicht am 29.02.2024
Originalveröffentlichung
DOI: 10.4230/lipics.sea.2023.20
Scopus
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2023
Sprache Englisch
Identifikator ISBN: 978-3-9597727-9-2
ISSN: 1868-8969
KITopen-ID: 1000162489
HGF-Programm 46.21.02 (POF IV, LK 01) Cross-Domain ATMLs and Research Groups
Erschienen in 21st International Symposium on Experimental Algorithms (SEA 2023), 24th-26th July 2023, Barcelona
Veranstaltung 21st International Symposium on Experimental Algorithms (SEA 2023 2023), Barcelona, Spanien, 24.07.2023 – 26.07.2023
Verlag Schloss Dagstuhl - Leibniz-Zentrum für Informatik (LZI)
Seiten 0:1–20:20
Serie 265
Vorab online veröffentlicht am 19.07.2023
Schlagwörter computational geometry, geometric spanners, Yao graphs, sweepline algorithms, optimal algorithms, Theory of computation → Sparsification and spanners
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page