KIT | KIT-Bibliothek | Impressum | Datenschutz

Automatic estimation of excavator actual and relative cycle times in loading operations

Molaei, Amirmasoud ORCID iD icon 1; Kolu, Antti; Lahtinen, Kalle; Geimer, Marcus ORCID iD icon 1
1 Institut für Fahrzeugsystemtechnik (FAST), Karlsruher Institut für Technologie (KIT)

Abstract:

This paper proposes a framework to automatically determine the productivity and operational effectiveness of an excavator. The method estimates the excavator's actual, theoretical, and relative cycle times in the loading operation. Firstly, a supervised learning algorithm is proposed to recognize excavator activities using motion data obtained from four inertial measurement units (IMUs) installed on different moving parts of the machine. The classification algorithm is offline trained using a dataset collected via an excavator operated by two operators with different levels of competence in different operating conditions. Then, an approach is presented to estimate the cycle time based on the sequence of activities detected using the trained classification model. Since operating conditions can significantly influence the cycle time, the actual cycle time cannot solely reveal the machine's performance. Hence, a benchmark or reference is required to analyze the actual cycle time. In the second step, the theoretical cycle time of an excavator is automatically estimated based on the operating conditions, such as swing angle and digging depth. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000162647
Veröffentlicht am 29.09.2023
Originalveröffentlichung
DOI: 10.1016/j.autcon.2023.105080
Scopus
Zitationen: 3
Web of Science
Zitationen: 1
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Fahrzeugsystemtechnik (FAST)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2023
Sprache Englisch
Identifikator ISSN: 0926-5805, 1872-7891
KITopen-ID: 1000162647
Erschienen in Automation in Construction
Verlag Elsevier
Band 156
Seiten Art.Nr.: 105080
Projektinformation MORE (EU, H2020, 858101)
Schlagwörter Excavator, Productivity estimation, Activity recognition, Cycle time estimation, Swing angle, Digging depth, Loading operation
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page