KIT | KIT-Bibliothek | Impressum | Datenschutz

Discrete nonlinear elastodynamics in a port‐Hamiltonian framework

Kinon, Philipp L. ORCID iD icon 1; Thoma, Tobias; Betsch, Peter; Kotyczka, Paul
1 Institut für Mechanik (IFM), Karlsruher Institut für Technologie (KIT)

Abstract:

We provide a fully nonlinear port-Hamiltonian formulation for discrete elastodynamical systems as well as a structure-preserving time discretization. The governing equations are obtained in a variational manner and represent index-1 differential algebraic equations. Performing an index reduction, one obtains the port-Hamiltonian state space model, which features the nonlinear strains as an independent state next to position and velocity. Moreover, hyperelastic material behavior is captured in terms of a nonlinear stored energy function. The model exhibits passivity and losslessness and has an underlying symmetry yielding the conservation of angular momentum. We perform temporal discretization using the midpoint discrete gradient, such that the beneficial properties are inherited by the developed time stepping scheme in a discrete sense. The numerical results obtained in a representative example are demonstrated to validate the findings.


Verlagsausgabe §
DOI: 10.5445/IR/1000162957
Veröffentlicht am 10.10.2023
Originalveröffentlichung
DOI: 10.1002/pamm.202300144
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mechanik (IFM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 1617-7061
KITopen-ID: 1000162957
Erschienen in PAMM
Verlag Wiley-VCH Verlag
Band 23
Heft 3
Seiten Art.Nr.: e202300144
Vorab online veröffentlicht am 15.09.2023
Schlagwörter discrete gradients, discrete mechanics, nonlinear elastodynamics, port-Hamiltonian systems, structure-preserving discretization
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page