KIT | KIT-Bibliothek | Impressum | Datenschutz

Pol-InSAR-Island - A benchmark dataset for multi-frequency Pol-InSAR data land cover classification

Hochstuhl, Sylvia ORCID iD icon 1; Pfeffer, Niklas; Thiele, Antje; Hinz, Stefan; Amao-Oliva, Joel; Scheiber, Rolf; Reigber, Andreas; Dirks, Holger
1 Institut für Photogrammetrie und Fernerkundung (IPF), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

This paper presents Pol-InSAR-Island, the first publicly available multi-frequency Polarimetric Interferometric Synthetic Aperture Radar (Pol-InSAR) dataset labeled with detailed land cover classes, which serves as a challenging benchmark dataset for land cover classification. In recent years, machine learning has become a powerful tool for remote sensing image analysis. While there are numerous large-scale benchmark datasets for training and evaluating machine learning models for the analysis of optical data, the availability of labeled SAR or, more specifically, Pol-InSAR data is very limited. The lack of labeled data for training, as well as for testing and comparing different approaches, hinders the rapid development of machine learning algorithms for Pol-InSAR image analysis. The Pol-InSAR-Island benchmark dataset presented in this paper aims to fill this gap. The dataset consists of Pol-InSAR data acquired in S- and L-band by DLR's airborne F-SAR system over the East Frisian island Baltrum. The interferometric image pairs are the result of a repeat-pass measurement with a time offset of several minutes. The image data are given as 6 × 6 coherency matrices in ground range on a 1 m × 1m grid. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000163017
Veröffentlicht am 13.10.2023
Originalveröffentlichung
DOI: 10.1016/j.ophoto.2023.100047
Scopus
Zitationen: 1
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Photogrammetrie und Fernerkundung (IPF)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 13.10.2023
Sprache Englisch
Identifikator ISSN: 2667-3932
KITopen-ID: 1000163017
HGF-Programm 12.11.31 (POF IV, LK 01) New observational systems and cross platform integration
Erschienen in ISPRS Open Journal of Photogrammetry and Remote Sensing
Verlag Elsevier
Band 10
Seiten Article no: 100047
Schlagwörter Pol-InSAR; Multi-frequency; Benchmark dataset; Land cover classification; Machine learning; Wishart classifier; Random forest classifier
Nachgewiesen in Dimensions
Scopus
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page