KIT | KIT-Bibliothek | Impressum | Datenschutz

Sanitizing data for analysis: Designing systems for data understanding

Holstein, Joshua ORCID iD icon 1; Schemmer, Max 1; Jakubik, Johannes ORCID iD icon 1; Vössing, Michael ORCID iD icon 1; Satzger, Gerhard ORCID iD icon 1
1 Karlsruhe Service Research Institute (KSRI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

As organizations accumulate vast amounts of data for analysis, a significant challenge remains in fully understanding these datasets to extract accurate information and generate real-world impact. Particularly, the high dimensionality of datasets and the lack of sufficient documentation, specifically the provision of metadata, often limit the potential to exploit the full value of data via analytical methods. To address these issues, this study proposes a hybrid approach to metadata generation, that leverages both the in-depth knowledge of domain experts and the scalability of automated processes. The approach centers on two key design principles—semanticization and contextualization—to facilitate the understanding of high-dimensional datasets. A real-world case study conducted at a leading pharmaceutical company validates the effectiveness of this approach, demonstrating improved collaboration and knowledge sharing among users. By addressing the challenges in metadata generation, this research contributes significantly toward empowering organizations to make more effective, data-driven decisions.


Verlagsausgabe §
DOI: 10.5445/IR/1000163103
Veröffentlicht am 17.10.2023
Originalveröffentlichung
DOI: 10.1007/s12525-023-00677-w
Scopus
Zitationen: 4
Web of Science
Zitationen: 3
Dimensions
Zitationen: 6
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Wirtschaftsinformatik und Marketing (IISM)
Karlsruhe Service Research Institute (KSRI)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2023
Sprache Englisch
Identifikator ISSN: 1019-6781, 1422-8890
KITopen-ID: 1000163103
Erschienen in Electronic Markets
Verlag Springer
Band 33
Heft 1
Seiten Art.-Nr.: 52
Vorab online veröffentlicht am 09.10.2023
Nachgewiesen in Web of Science
Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page