KIT | KIT-Bibliothek | Impressum | Datenschutz

Axis-Parallel Right Angle Crossing Graphs

Angelini, Patrizio; Bekos, Michael A.; Katheder, Julia; Kaufmann, Michael; Pfister, Maximilian; Ueckerdt, Torsten 1; Gørtz, Inge Li [Hrsg.]; Farach-Colton, Martin [Hrsg.]; Puglisi, Simon J. [Hrsg.]; Herman, Grzegorz [Hrsg.]
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract:

A RAC graph is one admitting a RAC drawing, that is, a polyline drawing in which each crossing occurs at a right angle. Originally motivated by psychological studies on readability of graph layouts, RAC graphs form one of the most prominent graph classes in beyond planarity.
In this work, we study a subclass of RAC graphs, called axis-parallel RAC (or apRAC, for short), that restricts the crossings to pairs of axis-parallel edge-segments. apRAC drawings combine the readability of planar drawings with the clarity of (non-planar) orthogonal drawings. We consider these graphs both with and without bends. Our contribution is as follows: (i) We study inclusion relationships between apRAC and traditional RAC graphs. (ii) We establish bounds on the edge density of apRAC graphs. (iii) We show that every graph with maximum degree 8 is 2-bend apRAC and give a linear time drawing algorithm. Some of our results on apRAC graphs also improve the state of the art for general RAC graphs. We conclude our work with a list of open questions and a discussion of a natural generalization of the apRAC model.


Verlagsausgabe §
DOI: 10.5445/IR/1000163539
Veröffentlicht am 27.10.2023
Originalveröffentlichung
DOI: 10.4230/lipics.esa.2023.9
Scopus
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2023
Sprache Englisch
Identifikator ISBN: 978-3-9597729-5-2
ISSN: 1868-8969
KITopen-ID: 1000163539
Erschienen in 31st Annual European Symposium on Algorithms (ESA 2023). Hrsg.: I., Li Gortz; M., Farach-Colton; S.J., Puglisi; G., Herman
Veranstaltung 31st 31st Annual European Symposium on Algorithms (Part of ALGO 2023) (ESA 2023), Amsterdam, Niederlande, 04.09.2023 – 08.09.2023
Verlag Schloss Dagstuhl - Leibniz-Zentrum für Informatik (LZI)
Seiten 1-15
Serie Leibniz International Proceedings in Informatics (LIPIcs) ; 274
Schlagwörter Graph drawing, RAC graphs, Graph drawing algorithms
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page